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Abstract

Particle-in-cell models have become standard computational tools for studying complex nonlinear phenomena in space
and laboratory plasmas. These simulations are normally very compute-intensive since they require time integration of
strongly coupled equations governing the field and particle dynamics. As a result, despite a significant progress in hardware
technology, particle-in-cell codes are rarely used to simulate long-time evolution of large-scale systems with strongly vary-
ing temporal and spatial scales. We propose an alternative paradigm to time stepping, which is traditionally used for time
integration of such systems. This new approach is based on explicit discrete-event simulation technology. It offers distinct
advantages over synchronous time stepping: (i) updates of individual macro-particles and discrete field elements are per-
formed asynchronously, (ii) local time increments are determined and self-adaptively adjusted in time through scheduling
and execution of physically meaningful local updates (‘‘events’’). The event-driven time advance is accurate, free of the
global Courant condition, stable, parallelizable, extendable to multiple dimensions and well suited for nonuniform spatial
meshes. We demonstrate the new method on a one-dimensional hybrid particle-in-cell model with applications to several
plasma discontinuities, including a high-Mach-number fast magnetosonic shock and the associated plasma turbulence.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The collective kinetic properties of laboratory and space plasmas are commonly simulated by the particle-in-
cell (PIC) method [1–3], where the self-consistent (coupled) equations of particle motion and field evolution are
usually solved on a spatial mesh. The forces acting on individual macro-particles as well as the mesh-defined
current and charge densities are obtained via mesh-particle interpolation (gather–scatter) operations. The
full-PIC models follow the motion of both electron and ion macro-particles in self-consistent fields
governed by the Maxwell equations. In this paper, we will focus on the hybrid-PIC approximation [4,5], where
the ion species are represented by macro-particles, whereas the electrons are described by quasineutral fluid
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equations (considered to be part of the field solve). The traditional time-dependent PIC models employ time
stepping for updating macro-particles and fields in time. Normally, in explicit hybrid schemes, the particle
orbits are leap-frog integrated, and the electric and magnetic fields are obtained with proper predictor–correc-
tor schemes [4,5]. The maximum time-step sizes allowed for stable synchronous advances of particle and field
quantities on a spatial mesh are known to be restricted by relevant Courant conditions. These conditions may
become especially prohibitive for computational problems with strongly varying time scales [6]. In addition,
in situations where physical processes are characterized by irregular temporal dynamics (e.g. turbulence),
synchronous updates may have difficulty adjusting time steps in a timely fashion to correctly capture phase cor-
relations among fast-evolving variables, which may give rise to numerical instabilities. In this paper, we address
these issues by describing a self-adaptive, event-driven approach to time integration of such complex, multi-
scale systems. This paper extends and generalizes our works on asynchronous electrostatic PIC simulations
[7] and flux-conservative partial differential equations (PDEs) [8]. It is organized as follows. In Section 2, we
introduce a general discrete-event simulation (DES) paradigm for the time-dependent PIC method. Section
3 is devoted to the description of hybrid plasma approximation. In Sections 4 and 5, we describe self-adaptive
DES algorithms for time integration of the hybrid model. In Section 6, we consider an additional (ad hoc) com-
putational algorithm that enables ‘‘on-the-fly’’ activation of mesh cells in accordance with evolving solution. In
Section 7, we validate the new DES hybrid code against two different time-stepping codes. In Section 8, we pres-
ent results from simulations of high-Mach-number kinetic plasma turbulence. Finally, Section 9 concludes this
paper with a summary of the most important results obtained.

2. PIC-DES paradigm

Discrete-event (event-driven) simulations have their origin in operations research and management science,
war games and telecommunications [9,10]. This powerful methodology has recently been applied to simulate
electrostatic PIC effects [7] and advection–diffusion-reaction equations [8].

In discrete-event simulations, the temporal evolution of a global system is modeled by executing discrete
events, which force finite transitions of the system from one global state to another [9]. At minimum, each dis-
crete-event object is characterized by a method (process function) for modifying the corresponding local state
of the system and a point in simulated time, te (time stamp), at which the process function is scheduled to be
executed by the DES control flow executive (engine). A physics-based discrete-event simulation normally
begins by scheduling events (i.e., predicting future updates) for all micro-states (e.g., particles, mesh-defined
variables), based on the rates of change derived from the governing equations for these quantities [7,8]. All
pending (scheduled but not yet executed) events are sorted into the event queue by their time stamps in
non-decreasing order so that the time stamp of the top event always corresponds to the earliest event in
the simulation. The DES engine repeatedly removes the earliest (top) event from the event list and processes

the local state corresponding to that event. The global system progress in simulated time is monitored by the
simulation clock, which is advanced upon processing each event by setting its current time, tclock to the time
stamp of the event being processed, tclock = te (Fig. 1).

In time-dependent mesh-based models, each spatial element (‘‘cell’’) may be assigned a number of dis-
crete micro-states (further simply referred to as ‘‘states’’) characterized by unique simulation variables. For
instance, in PIC simulations, for cell k we introduce states, P̂ k (PIC-state) and F̂ k (F-state), which corre-
spond to the local particle and field descriptions, respectively. From a programming standpoint, these
states encapsulate data and evolution rules associated with their physical representations (note that in a
multi-species PIC model, each particle species, s in cell k may be represented by a separate state, P̂

s

k). Hav-
ing been initialized and scheduled at start-up, the PIC and field states evolve and interact in time in accor-
dance with predefined causality and communication rules very much like processes in a preemptive
operating system environment. Their process functions are composed of three common algorithmic phases
(Fig. 1): (i) the time advance algorithm; (ii) the synchronization (inter-state communication) phase and (iii)
the event scheduling procedure.

The basic PIC-DES programming structures have been described previously [7]. Here we repeat and
generalize the most essential provisions of that work. P̂ k encapsulates a time-sorted queue of wrapper objects
corresponding to macro-particles located inside cell k. Each particle wrapper encapsulates an index to the



Fig. 1. The typical phases of event-driven time integration. Upon executing the process function of an event with a timestamp, te, the
global simulation time tclock = t is advanced by an irregular time increment, Dte = te � t. Note that the event synchronization phase may
result in retracting pending events and scheduling new events for nonlocal micro-states.
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location of the corresponding macro-particle in memory storage and an estimated move time of that particle.
To facilitate operations related to dynamic memory reallocation, we use indirect integer array indices instead
of direct pointers to particle memory locations. The process time of P̂ k coincides with the earliest move time in
its PIC queue (or infinity, if the latter is empty). Depending on the PIC interpolation scheme, particles in P̂ k

may interact (through gather–scatter operations) with mesh-defined quantities defined in a stencil-wide neigh-
borhood of cell k. Therefore, in principle, particle-field ðP̂ ! F̂ Þ and field-particle ðF̂ ! P̂ Þ synchronization
operations may be nonlocal. In this paper, for the sake of simplicity, we adopt the nearest grid point
(NGP) interpolation [1,2], which results in local gather–scatter and synchronization updates (Fig. 2). Note
that the priority queue-based implementation of PIC-state automatically ensures proper particle–particle
ðP̂ ! P̂ Þ synchronization when the next move time of the particle being updated happens to be earlier than
the process time of its new PIC-state [7]. Should this PIC-state have a pending event, it is retracted and a
new one is scheduled accordingly. The algorithmic details of event-driven and synchronization operations
are provided below (see Sections 4 and 5).

In general, an F-state event may correspond to the time advance of a single solution variable or a group of
synchronously updated variables defined at each cell of the spatial mesh. Electromagnetic PIC models describe
the time evolution of magnetic and electric fluxes and plasma sources. A general event-driven approach to
solution of flux-conservative equations was developed elsewhere [8]. In essence, this algorithm advances field
quantities based on pre-defined ‘‘target’’ (threshold) increment values, rather than prescribed time increments.
This enables truly asynchronous, self-adaptive integration that strictly preserves local flux conservation laws.
Note that in the case of time-dependent field equations, field update events are scheduled and processed asyn-
chronously with respect to particle push events. This introduces a new degree of complexity compared to the
previously considered electrostatic PIC-DES model [7], where local field updates were automatically triggered
by particle displacements. In addition, self-adaptive field–field ðF̂ ! F̂ Þ flux synchronization updates may also
lead to indirect (i.e., nonlocal) interactions between field and particle states.
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Fig. 2. Schematics of event synchronization updates executed upon the processing of field and PIC events in cell k: (a) F-state ðF̂ kÞ is
advanced with a time increment, Dtk; (b) particle p of PIC-state ðP̂ kÞ is pushed with an individual time increment, Dtp. The numbers next to
the arrowed lines indicate the sequential order of the corresponding event-driven (1) and synchronization (2 and 3) updates.

156 Y.A. Omelchenko, H. Karimabadi / Journal of Computational Physics 216 (2006) 153–178
The most significant property of DES is its self-adaptivity. Indeed, contrary to the spirit of traditional time-
stepping schemes, event-driven computation follows causal (interactive) rather than temporal (parametric)
dependencies existing among different components of the system (e.g., particles and fields). Consequently,
an actual simulation model is able to control its numerical behavior by adjusting local update rates of physical
quantities in accordance with physical process rates [8]. DES integration is explicit and therefore, in principle,
time reversible with the exception of extraneous effects such as boundary damping conditions, particles losses,
etc.

The temporal accuracy of a time-stepping scheme depends on the order of its time integrator and the global
time-step size. The numerical errors are usually controlled by observing convergence of results obtained with
different time increments. Likewise, the temporal resolution of a DES model depends on the order of temporal
discretization of the governing equations and the threshold values for physical quantities of interest. However,
self-adaptive DES solutions are able to asynchronously increase local computation accuracy by reducing local
time increments. This results in automated mitigation of the contribution of large time derivatives to numer-
ical approximation errors, leading to enhanced numerical stability. Therefore, multi-scale DES models prove
to be more robust and CPU efficient than their time-stepping counterparts.

3. Hybrid-PIC model

The hybrid-PIC description [4,5] may be considered as an intermediary plasma approximation between
(one-fluid or two-fluid) magnetohydrodynamics (MHD) and fully kinetic models. The hybrid simulation par-
adigm provides a full particle-in-cell description for the ions and treats the electrons as a fluid. The relevant
scales are the ion gyroradius, rci ” vi/Xci and the inertial length, di ” c/xpi (vi is the characteristic ion velocity;
xpi, Xci are the ion plasma and cyclotron frequencies, respectively). Consequently, to fully resolve ion dynam-
ics in spatial regions of interest, the grid spacing in hybrid models has to be smaller than these characteristic
lengths.
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3.1. Hybrid plasma approximation

The traditional hybrid models assume the charge quasi-neutrality condition:
ene ¼ qini; ð1Þ

where �e, qi are the electron and ion charges and ne, ni are the electron and ion number densities, respectively
(we assume a single ion species in this paper). The electrons are usually treated as a collisional, inertialess
(me dve/dt = 0) fluid. This results in the following form of Ohm’s law for the electric field E:
E ¼ je � Btot

enec
�rpe

ene

þ gj; j ¼ je þ ji; ð2Þ
where je, pe are the electron current and (scalar) pressure respectively, g is the plasma resistivity, Btot is the total
magnetic field, and ji is the ion current density collected at mesh cells by summing up relevant macro-particle
contributions (Vcell is the cell volume, qp and S(r) are the macro-particle charge and form-factor, respectively):
ji ¼
X

p

qpSðjr� rpjÞvp=V cell. ð3Þ
The electron pressure is normally excluded from Eq. (2) through an adiabatic equation-of-state:
pe ¼ neT e ¼ Cpnc
e; c ¼ 5=3; Cp ¼ const. ð4Þ
Ions with the charge qi and the mass mi move in the electric and magnetic fields under the influence of elec-
tron–ion collisions (conserving the total plasma momentum) in accordance with the non-relativistic equations
of motion,
dvp

dt
¼ qi

mi

E0p þ
vp � Btot

p

c

 !
;

drp

dt
¼ vp; ð5Þ
where we introduced the effective electric field, E 0:
E0 ¼ E� gj. ð6Þ

In Eq. (5) E0p, Btot

p are evaluated at the particle positions rp by summing up the contributions from neighboring
mesh cells, k:
E0p ¼
X

k

E0kSðjrk � rpjÞ; Btot
p ¼

X
k

Btot
k Sðjrk � rpjÞ. ð7Þ
Ampere’s law is written in the low-frequency Darwin (radiation-free) limit for the self-generated magnetic
field, B:
r� B ¼ 4p
c

j. ð8Þ
Finally, the magnetic field is advanced in time via Faraday’s law:
oB

ot
¼ �cr� E. ð9Þ
Eqs. (1)–(9) constitute a closed set of equations governing plasma evolution in the quasi-neutral hybrid
approximation. More detailed discussions of underlying physical assumptions and further extensions to this
formulation can be found in [4,5].

3.2. Numerical challenges of hybrid codes

There are two main factors that determine the stability and accuracy of local time integration of the hybrid
equations: (i) the particle push time, DtPIC, which needs to be the smallest of the local minimum particle cell
transit time and a fraction (say, kPIC 6 0.1) of the local inverse ion gyrofrequency, and (ii) the field update
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time, Dtw restricted by the local CFL condition on plasma wave propagation. Mathematically, these two con-
ditions can be expressed as follows:
DtPIC < minðDx=jvPICjmax
; kPICX�1

ci Þ; ð10aÞ

Dtw <
ðDx=diÞ2

p
ffiffiffiffi
D
p X�1

ci . ð10bÞ
Here D is the dimensionality of the problem, Dx is the mesh size, and |vPIC|max is the maximum absolute par-
ticle velocity component in a given cell. Note that condition (10b) is based on the whistler mode [11], which is
supported due to the inclusion of the Hall term in Eq. (2). Whistlers are usually the fastest propagating waves
in hybrid applications. When electron inertia is not neglected, the whistler spectrum has a cutoff at the electron
cyclotron frequency, Xce due to Landau damping. However, in the inertialess hybrid approximation (me! 0)
the whistler frequency spectrum is unbounded. As a result, the CFL constraint on field integration (Eq. (10b))
may become very restrictive. To avoid generation of unphysical oscillations in the low-density regions, one
usually imposes a minimum value on the electron density, nmin (ne P nmin). This cutoff value is assumed to
be a small fraction of the characteristic plasma density, which is physically equivalent to the existence of a
small cold background ion population.

In order to keep the hybrid computation stable, restrictions (10) have to be satisfied globally at all times.
This poses severe challenges for simulations of multi-scale systems such as hybrid simulations of the solar wind
interaction with the Earth’s magnetosphere (see Appendix A.1). Standard hybrid predictor–corrector field
solvers [4] may have difficulty capturing these variations in time. Iterative solvers [12,13] are based on error
estimation and usually more effective in detecting a developing instability since they dynamically track the
number of iterations required for convergence and adjust the global time-step size accordingly. However, this
inevitably results in a proportional slow-down of the simulation.

3.3. Spatial and temporal discretization

We consider a one-dimensional hybrid model based on Eqs. (1)–(9). We apply a staggered mesh approach
[13] to the spatial discretization of the field equations and define time integrators for the field and particle solv-
ers in accordance with event-driven methodology.

3.3.1. Field solve

We assume that the global computation domain, x 2 [0,L], is partitioned into a uniform mesh composed of
N cells (k = 0, N � 1), with the cell size Dx = L/N, cell centers xk = (k + 1/2)Dx, and cell ‘‘face’’ positions
xk� 1/2 = kDx. In addition, ghost cells k = �1,N (with centers at x�1 and xN) are added to the left and right
boundaries of the domain. All mesh-based quantities, except the self-generated magnetic field Bk� 1/2, are
defined at cell centers xk. Bk� 1/2 is defined at cell faces xk� 1/2 in order to preserve the numerical analogue
of divB = 0 in accordance with Faraday’s law (Eq. (9)). This monopole-free property of the magnetic field
in one-dimension is automatically reduced to the following requirement:
Bx;tot
k ¼ const ¼ Bx

0; ð11Þ
where B0 ¼ ðBx
0; 0;B

z
0Þ is the stationary applied magnetic field. To enable convenient asynchronous computa-

tion on staggered meshes, we introduce the vector-potential function, A:
B ¼ r� A. ð12Þ
By defining A at the cell centers and using second-order approximations for the spatial derivatives, we reduce
Eq. (12) to the following finite-difference relations:
By
k�1=2 ¼ �ðA

z
k � Az

k�1Þ=Dx; Bz
k�1=2 ¼ ðA

y
k � Ay

k�1Þ=Dx. ð13Þ
Applying the forward-differencing scheme to the time derivative in Eq. (9) and taking into account Eq. (12)
results in a local time evolution equation for the cell-centered A:
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Akðtk þ DtkÞ � AkðtkÞ
Dtk

¼ �cEkðtkÞ; ð14Þ
where tk is the last update time of F̂ k and Dtk = tclock � tk. The cell-centered electric field Ek is computed by
combining discrete analogues of Eqs. (2) and (8):
Ek ¼
jek � Btot

k

enekc
�
rpe;k

enek
þ gkjk; ð15Þ

rpe;k ¼
1

2
ðrpe;k�1=2 þrpe;kþ1=2Þ; rpe;kþ1=2 ¼ cCpnc�1

e;kþ1=2

ne;kþ1 � ne;k

Dx
; ð16Þ

ne;kþ1=2 ¼
1

2
ðne;k þ ne;kþ1Þ; Btot

k ¼
1

2
ðBk�1=2 þ Bkþ1=2Þ þ B0k; ð17Þ

jek ¼ jk � jik; jx
k ¼ 0; jy

k ¼ �
c

4pDx
ðBz

kþ1=2 � Bz
k�1=2Þ; jz

k ¼
c

4pDx
ðBy

kþ1=2 � By
k�1=2Þ. ð18Þ
To reduce the potentially harmful effect of plasma pressure (density) fluctuations on ion dynamics [14], we
smooth the electron pressure gradient $pe, k before using it in Eq. (15) by applying two-point temporal and
three-point (binomial) spatial filters. Expressions for magnetic field components (Eq. (13)) require that appro-
priate boundary conditions be defined at the ghost cell centers (for A) or faces (for B). In this paper we use a
linear combination of Neumann and Dirichlet conditions for the vector-potential, A:
Df
gAf

g þ N f
g

dAf

dx

� �
g

¼ Rf
g; g ¼ �1;N ; f ¼ y; z. ð19Þ
Here Df
g and N f

g and N f
g are arbitrary constant parameters. In discrete form, Eq. (19) is readily inverted to

express values Af
g in ghost cells g in terms of values Af

s in adjacent (boundary) cells s:
Af
g ¼

Rf
g þ Af

sðaf
g � Df

g=2Þ
af

g þ Df
g=2

; af
g ¼ ðg � sÞN f

g=Dx. ð20Þ
Finally, Eq. (15) needs to be complemented by a model for the phenomenological resistivity g. In this paper we
consider only collisionless plasmas (with negligible physical dissipation) and apply small artificial resistivity
for the purpose of filtering spurious whistler oscillations generated by noisy particle motion. We use the fol-
lowing dissipative filter based on detection of short-wavelength variations of the total current:
gk ¼ geff

Y
1¼y;z

rf
k; rf

k ¼
jDþk jf � D�k jfj þ e2

jDþk jfj þ jD�k jfj þ e

� �m

; ð21Þ

Dþk jf ¼ jf
kþ1 � jf

k; D�k jf ¼ jf
k � jf

k�1. ð22Þ
In Eq. (21) geff is the maximum value of artificial resistivity (considered to be a constant in this study), m P 1 is
an arbitrary exponent, which makes the resistivity decay away from regions with spurious oscillations (we use
m = 2), and e� 1 is a small number of order the precision round-off error that guarantees rf

k � 0 in regions
where Dþk jf � D�k jf � 0. Note that in general, rf

k � 0, if the local solution is smooth ðDþk jf � D�k jfÞ and rf
k � 1,

if a local maximum or minimum develops in either component of the total current ðDþk jf � �D�k jfÞ. A suitable
alternative expression to Eq. (21) could also be obtained by taking the arithmetic average of factors, rf

k.
Given the mesh-defined ion moments, nik, jik, Eqs. (1), (11), (13)–(18), (20)–(22) compose a complete 1-D

discrete hybrid approximation. It should be noted that we make use of the vector-potential A only for the
purpose of calculating the magnetic field B in Eq. (13). Therefore, our model does not require the usual cal-
ibration condition, divA = 0. As a result, it is extendable to multiple spatial dimensions, unlike some special
A-based formulations [15,16].

3.3.2. PIC push

The ion macro-particles are updated in time (‘‘pushed’’) with Eq. (5). For particle p, its new velocity
~vp � vpðtp þ DtpÞ can be easily expressed in terms of its old velocity vp ” vp(tp) and the field fE0p;Btot

p g evaluated
at its position xp by inverting the following discrete equation [1]:
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~vp � vp

Dtp

¼ qi

mi

E0p þ
vp þ ~vp

2c
� Btot

p

� �
. ð23Þ
The particle positions are advanced using estimates of their time-centered velocities, �vx
p:
~xp ¼ xp þ Dtp�vx
p; �vx

p ¼ vx
p þ

ax
pDtp

2
; ð24Þ
where ax
p is a predicted particle acceleration in the x-direction:
ax
p ¼

qi

mi

E0p þ
vp � Btot

p

c

 !x

. ð25Þ
Note that in Eqs. (23)–(25) Dtp is the individual time increment for particle p. In DES, Dtp may be dynamically
adjusted in accordance with a particle’s trajectory and resolution requirements. In this paper, Dtp is selected
based on a stipulation that a particle displacement in a single update (push) cannot exceed a given fraction of
the cell size, 0 < rPIC 6 1 (note that in principle, rPIC can be defined as a function of cell position):
~xp ¼ xp � rPICDx. ð26Þ

Combining Eqs. (24) and (26) results in a quadratic equation for Dtp:
vx
p þ

ax
pDtp

2

� �
Dtp ¼ �rPICDx; ð27Þ
which is easily solved for the minimum positive solution, DtE
p . Note that neglecting ax

p both in Eqs. (24) and
(27) would result in a faster but less accurate scheme. In addition, as mentioned above, to guarantee an ade-
quate numerical accuracy of Eq. (23), we limit the particle time increment Dtp to a fraction of the inverse local

ion gyrofrequency, X�1
ci ðxÞ:
Dtp ¼ minðDtE
p ; kPIC=XciðxÞÞ. ð28Þ
The previous 1-D PIC-DES models [7,16] required that macro-particles switch cells in each update. They
employed analytical PIC pushers to compute particle cell exit times. This algorithm is difficult to implement
in higher dimensions. In addition, it is critically dependent on the NGP scheme for gather–scatter operations.
The PIC push algorithm described in this paper (Eqs. (23)–(28)) is extendable to multiple spatial dimensions
and arbitrary interpolation schemes.

3.4. Event-driven time integration

The comparison of algorithmic flows in typical event-driven and time-driven (time-stepping) simulations
has been illustrated elsewhere [7,8]. At start-up (tclock = 0), all field and particle states in the hybrid DES
model are properly initialized and scheduled for execution in accordance with their estimated process times
(see Sections 4.4 and 5.3). As mentioned above, the DES loop proceeds by continuously processing the ear-
liest event (regardless of its type) stored in the dynamically evolving global event queue (Fig. 1), until the
global clock time reaches the specified simulation finish time. The processing of events associated with local
PIC-states and F-states is carried out asynchronously. This is done in a self-adaptive (recurrent) fashion via
three event processing phases (Figs. 1 and 2) defined for each type of event (see Sections 4 and 5). Note that
self-adaptation of the hybrid DES model manifests itself in modifying local particle and field states (and
possibly pending events associated with them) upon processing each event stored in the global event queue.
The accuracy of DES is controlled through limiting local incremental changes both to the particle sources
(current and number densities) and the magnetic field. This supersedes the conventional time-stepping
hybrid paradigm, where synchronous particle and field computations are usually time centered with respect
to each other in order to minimize temporal discretization errors. However, time centering does not limit the
magnitude of residual error terms (of higher order in Dt), which may become large due to spurious (unphys-
ical) fluctuations in stochastic and discontinuous solutions. On the contrary, DES mitigates the effect of
such fluctuations by limiting one-time changes to simulation variables and following causality rules. As a
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result, DES automatically increases update rates in regions where the solution exhibits fast variation. For
simplicity, in Eqs. (14), (23)–(25) we use forward-time integration for advancing the field and particle quan-
tities. This assumes that all physical micro-states evolve at predetermined rates approximated to be piecewise

constant in time. These rates are adaptively modified via event-driven or synchronization updates when
changes to physical quantities are found to exceed specified threshold values.
4. Event-driven field solve

Asynchronous field advance is performed by applying a variation of the flux-conserving algorithm
described in [8]. For these purposes, we augment each state, F̂ k by a number of ‘‘internal’’ DES variables,
namely the field ‘‘flux capacitor’’, dAk, the ion current and charge density ‘‘register’’ variables, djik and dqik,
the field ‘‘target increment’’, DAtr

k , and the F-state update time, tk. The field flux capacitor dAk is one of the
most essential elements of asynchronous DES integration [8]. It represents the net change to Ak due to inter-
state (F̂ ! F̂ and P̂ ! F̂ ) synchronization updates occurred since last invocation of the process function of F̂ k.
The target increment DAtr

k is a threshold quantity used to predict the next event for F̂ k and, if necessary, pre-
empt its execution. The variables djik and dqik store the net increments to the ion current (jik) and charge (qinik)
densities accumulated since last evaluation of Ohm’s law (Eq. (15)). The local time counter tk ‘‘remembers’’ the
most recent update time of state F̂ k caused by its processing or synchronization with other states. Let te be the
timestamp of event e corresponding to state F̂ k, being currently processed. The DES field solve can be
described as follows (also see Fig. 1).
4.1. F-state processing

1. Let tclock = te, Dtk = tclock � tk. Integrate F̂ k in time to obtain Ak(tclock), using Eq. (14).
2. Let dAk = 0, djik = 0, dqik = 0.
3. Call the field flux ðF̂ ! F̂ Þ synchronization procedure for all neighboring states, F̂ k�1 (Section 4.2).
4. Call the field-PIC ðF̂ ! P̂Þ synchronization procedure for state P̂ k (Section 5.2).
5. Schedule a new event for state F̂ k (Section 4.4).

4.2. Field flux synchronization

1. If F̂ s (the F-state being synchronized) is a boundary state, then apply an appropriate boundary condition,
execute step 5 of this procedure and return.

2. Let DA ” �cEs(tclock � ts). Update the flux capacitor dAs (Eq. (14)): dAs(tclock) = dAs(ts) + DA.
3. Update the local vector potential As (Eq. (14)): As(tclock) = As(ts) + DA. Let ts = tclock.
4. If jdAsjP jDAtr

s j then retract the pending event (corresponding to F̂ sÞ, execute steps 2–5 of the process func-
tion for F̂ s (Section 4.1, with k being replaced by s) and return.

5. Update the face-centered magnetic field components, By
ðsþkÞ=2, Bz

ðsþkÞ=2 (k denotes the cell that initiated the
synchronization call) via Eq. (13) using the latest approximations of the vector-potential variables
Ak(tclock), As(tclock).

6. Update the electric field Es(tclock) via Ohm’s law (15) using the latest approximations of all physical quan-
tities. Let djis = 0, dqis = 0.

4.3. PIC-field synchronization

This procedure is called from within the PIC-state process function (Section 5.1). Its purpose is to prevent
the local ion current and density fluctuations, |djis| and |dqis| from exceeding their given maximum values (Djtr

PIC

and Dqtr
PIC, respectively) during the time period between successive updates of F̂ s. The P̂ ! F̂ synchronization

procedure for state F̂ s can be summarized as follows.
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1. If jdjisj < Djtr
PIC and jdqisj < Dqtr

PIC, then return.
2. Let DA ” �cEs(tclock � ts). Update the flux capacitor dAs (Eq. (14)): dAs(tclock) = dAs(ts) + DA.
3. Update the vector-potential As (Eq. (14)): As(tclock) = As(ts) + DA. Let ts = tclock.
4. If jdAsjP jDAtr

s j, then retract the corresponding pending event, execute steps 2–5 of the process function
for F̂ s (Section 4.1, with k being replaced by s) and return.

5. Update the electric field Es(tclock) via Ohm’s law (15) using the latest approximations of all physical quan-
tities. Let djis = 0, dqis = 0.

4.4. F-state event scheduling

1. Update the electric field Ek(tclock) via Ohm’s law (15) using the latest approximations of all physical
quantities.

2. Find the maximum rate-of-change of the magnetic field, ðdB=dtÞmax
k ¼ maxk�1=2jðr � EÞf¼y;zðtclockÞj.

3. Compute the time delay Dtk ¼ DBtr=ðdB=dtÞmax
k (DBtr is the given threshold increment for the magnetic field)

and estimate the target value DAtr
k ¼ DtkcEk.

4. Schedule a new event for state F̂ k at the new process time, ~te ¼ tclock þ Dtk.

Note that Step 5 in Section 4.2 may result in a redundant computation of the electric field if an F-state being
synchronized was already processed at time t = tclock (i.e., it initiated the original synchronization sequence).
This is due to the fact that the electric field is also computed in Step 1 of this section (following the completion
of all synchronization calls initiated by this F-state). This redundancy can be avoided by adding straightfor-
ward logic. However, in our current practice it does not seem to significantly affect CPU timings, as the num-
ber of events being retracted and reactivated via synchronization updates is usually small compared to the
total number of events being executed at initially scheduled process times.

5. Event-driven PIC push

In addition to the local priority queue of particle wrappers, each PIC-state ðP̂ kÞ is characterized by two
‘‘wake-up’’ phase variables: dxk ¼

R
vx

k ds and d/k ¼
R

XciðxkÞds� /k0, where vx
k ¼ ðqi=miÞ

R
Ex

k ds, /k0 = sXci-
(x,s = 0) and s is the simulation time elapsed since last call to the field-PIC synchronization routine (see Sec-
tion 5.2). These variables keep track of the effective displacements of particles in space and phase angle due to
their motion in the electric field and rotation in the magnetic field, respectively. The field-PIC synchronization
occurs when either jdxkjP rw

PICDx or jd/kjP kw
PICð0 < rw

PIC < rPIC and 0 < kw
PIC < kPIC are control parame-

ters). This mechanism guarantees that particle move times are properly recalculated in accordance with
dynamic changes in the local electromagnetic field. Let te be the timestamp of event e, corresponding to state
P̂ k, being currently processed. The event-driven PIC push algorithm proceeds as follows.

5.1. PIC-state process function

1. Let tclock = te. Remove the top particle wrapper from the local PIC priority queue and identify the corre-
sponding particle p (with the previous push time tp) to advance.

2. Subtract the particle charge qp and current Jp = qpvp from the net ion charge Qk and current Jik in cell k.
3. Advance the particle position (Eq. (24)) and velocity (Eq. (23)) with the time increment Dtp = tclock � tp. If

the particle has crossed the domain boundary, then apply an appropriate boundary condition. Determine
the particle’s destination cell, d. If the particle has been absorbed, then proceed to step 6.

4. Add the particle charge qp and updated current Jp ¼ qp~vp to the net ion charge Qd and current Jid in cell d.
5. Compute the next particle push time, ~tp ¼ tp þ Dtp (Eq. (27)) using the latest field approximations and add a

new particle wrapper with this time stamp to the priority queue in cell d.
6. Reschedule state P̂ k and, if needed, state P̂ d 6¼k (Section 5.3).
7. Call the PIC-field synchronization procedure (Section 4.3) for state F̂ k and non-ghost state F̂ d 6¼k.
8. If cell k is the injection cell, then inject new particles (if necessary).



Y.A. Omelchenko, H. Karimabadi / Journal of Computational Physics 216 (2006) 153–178 163
5.2. Field-PIC synchronization

1. Update dxs and d/s in P̂ s (the PIC-state being synchronized). If jdxsj < rw
PICDx and jd/sj < kw

PIC, then return.
2. Advance all particles in cell s to the current simulation time tclock by applying steps 2–5 of Section 5.1 (with

k being replaced by s) for P̂ s.
3. If needed, reschedule updated PIC-states, P̂ d (Section 5.3).
4. Call the PIC-field synchronization procedure (Section 4.3) for non-ghost states F̂ d .

5.3. PIC-state scheduling

1. If P̂ k is empty, then return.
2. Schedule an event for P̂ k with a time stamp equal to the estimated move time of the top particle in the local

priority queue.

6. Field and PIC induced cell activation

The event-driven field and PIC algorithms described in Section 5 provide a powerful paradigm for building
flexible simulation models of multi-scale (spatially inhomogeneous) plasma systems. By default, they assume
that all system states are properly activated (initialized and scheduled) at the simulation start-up time. In many
problems of interest, however, certain parts of the system may remain in initial states for long periods of time.
For example, the upstream plasma in hybrid shock simulations [17–19] may be assumed to be unperturbed as
long as plasma oscillations or reflected particles do not enter that region. If all these cells were activated at
start-up, the simulation would spend unnecessary CPU time computing field noise oscillations and free-
streaming particle motion. To avoid this situation, we implemented an ad hoc cell ‘‘activation’’ mechanism
that keeps track of the moving ‘‘active’’ region boundary. In particular, we assume that cell activation may
be ‘‘field’’ or ‘‘particle’’ induced. The field-induced activation of an inactive cell takes place when the absolute
value of the local magnetic field in the ‘‘active boundary’’ cell deviates from the equilibrium value by a given
threshold value, DBa. The particle-induced activation occurs when any particle enters an inactive cell [7]. In
either case, the previously ‘‘dormant’’ cell sets its internal field and PIC time counters to the current clock time
and schedules its field and particle states for execution. The ‘‘active boundary’’ cell is also assumed to serve as
the PIC injection cell.

7. DES algorithm validation

A number of time-stepping algorithms have been developed for the numerical solution of the hybrid plasma
equations [4,5]. Given the fact that different algorithms are known to lead to certain differences in simulation
results, we have carried out a detailed comparison of our DES model with two different time-stepping (time-
driven) schemes. The first time-driven simulation (TDS) code has an implicit field solve [15] and the second
one is based on a modified predictor–corrector scheme [18,19]. Both TDS codes employ linear gather/scatter
particle interpolation. In case of discontinuities, plasma dynamics critically depend on the ratio of ion to elec-
tron plasma beta, bi/be, the Alfvén Mach number of the shock, MA, and the shock normal angle (angle formed
by the incident flow velocity with respect to the ambient magnetic field), hBN [5]. Accordingly, in our validation
studies we consider three different physical regimes, so that the combination of electromagnetic, thermal and
geometry effects produces three well-known types of plasma discontinuities: the low-Mach-number fast shock
(LFS) [5,17], the weak, intermediate shock (IS) [20,21], and the rotational discontinuity (RD) [22,23]. These
problems span a broad range of nonlinear wave–particle interactions and can be considered as stringent val-
idation tests of DES methodology. Table 1 summarizes the important simulation parameters for these runs.
We have also made additional runs with different combinations of time-step size and resistivity values and
included some of those results in Appendix A.2. The fourth case listed in Table 1 (HFS) corresponds to our sim-
ulations of high-Mach-number quasi-parallel shock-driven turbulence. It is separately discussed in Section 8.



Table 1
Summary of simulation run parameters

Run MA hBN bi be Dx xmax tmax NPIC/cell

LFS 2.0 30� 0.1 0.1 0.2 400 200 100
RD 0.707 45� 0.06 0.4 0.2 400 200 100
IS 1.05 20� 0.06 0.4 0.2 400 200 100
HFS 6.0 20� 0.5 0.5 0.5 1000 300 1000

The mesh size Dx and the domain length xmax are normalized to the upstream ion inertial length, �di ¼ c=�xpi. The run time is normalized to
the inverse upstream ion cyclotron frequency, X�1.
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In all simulations we consider proton plasmas with the same ion plasma to gyrofrequency ratio, �xpi=�Xci ¼
2000 ð�xpi � xpiðn0Þ; �Xci � XciðB0Þ � X; n0 is the upstream plasma equilibrium number density, B0 is the
magnitude of the ambient magnetic field). Unless stated otherwise, TDS runs are typically performed with
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boundary.



Y.A. Omelchenko, H. Karimabadi / Journal of Computational Physics 216 (2006) 153–178 165
the normalized resistivity, ~gTDS ¼ g�xpi=4p ¼ 10�5 and the time-step size, �XciDt ¼ 5� 10�3. The DES runs
(except the HFS case) were conducted with kPIC = 0.02, ~geff ¼ 2� 10�5, DBtr/B0 = 10�3. For simplicity, the
DES target displacement fraction, rPIC was calculated as a function of kPIC (see Section 3.3.2):
1.0

-1.0

By

Bz

N

B

Vx

1.0

-1.0

2.0

0.6

0.5

-0.2

0.9

1.2

100 350 150 350X X
IS

Fast Shock

Ωt=200
Red:  Discrete event Enlarged and ShiftedGreen: Predictor-correctorBlack: Implicit

IS

Fig. 5. Comparison of intermediate shock (IS) profiles obtained with the time-stepping and DES codes. (For interpretation of the
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Fig. 6. Comparison of IS phase space diagrams (the top panel) and temperature profiles (the bottom panel) obtained at Xt = 200 in the
TDS and DES runs. Particle velocities are normalized by the upstream Alfvén velocity. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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rPIC ¼ kPIC

vPIC=�Xci

Dx
;

where vPIC is the characteristic PIC velocity, equal to either the injection (LFS, IS, HFS) or the thermal velocity
(RD). In addition, all P̂ ! F̂ and F̂ ! P̂ wake-up parameters were chosen to constitute small fractions of the
appropriate characteristic quantities: rw

PIC=rPIC ¼ 0:05; kw
PIC=kPIC ¼ 0:1; Djtr

PIC=en0vPIC ¼ 10�3;Dqtr
PIC=en0 ¼

5� 10�2.
In all cases we form plasma discontinuities using the piston method [21] (Fig. 3). The computation

domain is initialized with a preexisting thermal plasma normally flowing in the x-direction with the velocity
equal to the background Alfven velocity times the desired Mach number (MA) of a given discontinuity
minus the downstream plasma velocity (as obtained from the Rankine–Hugoniot condition). New ions
are injected at the left boundary with the same flow velocity to maintain the constant density flow. The
incoming plasma is reflected off the stationary piston positioned at the right boundary, giving rise to the
ffi
t:

 0 -
 60
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formation of a discontinuity which propagates to the left, away from the piston. Backstreaming particles are
absorbed at the left boundary.

In the special case of rotational discontinuity (RD) [22,23], the upstream and downstream plasma velocities
are equal, and there is no initial plasma flow in the simulation frame of reference. In this case, macro-particles
exiting the computation domain through the left boundary are simply re-injected back with thermal velocities
to maintain the constant plasma density in the upstream region. It should be noted that in all cases subtle dif-
ferences in the particle initialization and injection schemes adopted in the three codes cause small variations in
the solutions. In order to emphasize the quantitative closeness of simulation results from the different codes,
we also find it useful to provide additional profiles obtained by applying appropriate (visually determined)
shifting transforms in the x-direction.

7.1. Low-Mach-number fast shock (LFS)

Fig. 4 (left panels) shows an overlay of fast shock profiles observed in the event-driven and two time-
stepping simulations. As expected, in this low-Mach-number case the upstream shock structure is composed
of a well-defined whistler wavetrain. The DES code is seen to capture the structure of this shock very accu-
rately. All three codes produce minor differences in the speed and amplitude of downstream oscillations.
Shifting the solutions (right panels) proves that the wavetrain and shock transition regions in these simula-
tions are almost identical. The small discrepancies in the shock speed were found to be due to the different
amounts of effective (numerical plus artificially imposed) resistivity in the three different codes (the time-
stepping codes use constant artificial resistivity). We have verified that increasing the resistivity in the pre-
dictor–corrector and implicit codes results in slower shock speeds (see Appendix A.2). Therefore, this case is
characteristic of strongly dominant short-wavelength whistler effects, which are sensitive to resistivity. For
comparison, neither the intermediate shock nor the rotational discontinuity simulation (considered below)
shows as much dependency on resistivity. Further discussion of the role of artificial resistivity in different
hybrid applications and their convergence studies is beyond the scope of this paper. Note that the simula-
tion period is very long, and the fact that the DES code captures the shock structure and position so accu-
rately is truly remarkable, especially given its NGP interpolation model and larger particle push time
increments. Interestingly, replacing ‘‘fat’’ particles with the NGP scheme in the time-stepping codes was
found to lead to numerical instabilities, which provides indirect evidence for superior stability properties
of DES.
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7.2. Intermediate shock (IS)

The physics of the so-called weak (sub-fast) intermediate shock is described elsewhere [20,21]. Fig. 5 shows
shock profiles obtained with all codes. The presence of an additional fast shock is due to kinetic effects that can
modify the fluid Rankine–Hugoniot conditions [20]. Contrary to the previous (LFS) case, these profiles are
found to be rather independent of time-step size and resistivity values (see Section A.2), as the IS structure
is strongly dominated by pressure-driven effects (compared to whistler wave dynamics).

The closeness of the DES and TDS solutions becomes also evident when one compares the corresponding
phase space diagrams and temperature plots (Fig. 6). It should be noted that the pressure smoothing effectively
suppresses negative effects of the NGP-driven (higher) PIC noise in the DES code and prevents the excessive
plasma heating due to spurious electron pressure fluctuations [14].

Furthermore, Fig. 7 (profiles of By stacked in time) illustrates a high degree of temporal–spatial accuracy
with which DES reproduces the IS evolution over long simulation periods.
 

Fig. 9. Time-stacked plots of By obtained in the RD case with the DES and predictor–corrector codes.



6

-6B

B

Y.A. Omelchenko, H. Karimabadi / Journal of Computational Physics 216 (2006) 153–178 169
7.3. Rotational discontinuity (RD)

Our final test problem deals with an isotropic rotational discontinuity generated by flipping around the
z-component of the magnetic field at the right boundary. Observe (Fig. 8) that shortly after the RD structure
is formed, a separate wave structure is generated in the upstream region. This wave packet eventually detaches
itself from the RD.

In the downstream region, however, the RD launches a small amplitude wave train, which remains insepa-
rable of the steady-state RD structure. Fig. 8 shows that DES captures the separating wave packet as well as the
attached wave train very accurately. Indeed, aside from minor differences in the RD speed (Fig. 8, left panels),
the solution profiles produced by the three codes are almost identical (Fig. 8, right panels). As in the previous
case, Fig. 9 illustrates the temporal dynamics of the RD wave structure through a series of ‘‘stack’’ plots.

8. Simulation of high-Mach-number kinetic turbulence

The previous test problems have proved the ability of DES to efficiently capture the essential physics of
weak-to-moderate plasma discontinuities. Now we turn our attention to a problem of great interest to helio-
spheric and magnetospheric physics, namely the self-consistent generation of plasma turbulence by strong fast
magnetosonic shocks (run HFS in Table 1). This problem is known to be very difficult to simulate with tra-
ditional codes because of its multi-scale nature, i.e., a considerable variation in the spatial and temporal scales
of self-generated turbulence [5,17]. For this case we have conducted a number of DES runs with the following
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Fig. 10. High-Mach-number fast shock (HFS) turbulence profiles obtained in DES runs with different values of kPIC (and proportional
values of geff). Note that in each run actual time increments used for local particle updates are adaptively selected in accordance with a
given value of kPIC.
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be comparable to statistical differences observed in runs conducted with the same input parameters but differ-
ent random generator seeds. As in the time-stepping simulations, this is caused by the highly turbulent nature
of high-Mach-number shock dynamics developing over long simulation periods.

Fig. 11 compares the DES solution profiles (kPIC = 0.03, ~geff ¼ 7� 10�5) with those obtained in the corre-
sponding time-stepping simulations ð�XciDt ¼ 0:005Þ. Clearly, the event-driven simulation shows four well-
resolved zones of shock-driven turbulence: (i) the low-frequency steepened oscillations observed far upstream
(‘‘shocklets’’), (ii) the short-wavelength oscillations in the near upstream region (driven by the reflecting ions),
(iii) the coherent shock transition region (where the upstream oscillations get compressed and amplified), and
(iv) the long-wavelength (rarefaction) waves in the downstream region.

On the other hand, the TDS solutions are found to drastically differ from the DES solution as they achieve
poorer resolution in all regions of the computation domain (with or without resistivity, see also Section A.2).

The differences between the DES and TDS profiles are further accentuated by the concomitant differences
in phase space (Fig. 12).

Clearly, in the TDS runs, the coherent oscillations in the shock transition layer are poorly resolved and the
upstream turbulence is either damped or transformed into incoherent noise (with zero resistivity). The abnor-
mally rapid decay of coherent oscillations in the time-stepping simulations was noted previously [17]. Compar-
isons with the DES model indicate that this is caused by numerical errors, which lead to phase
de-synchronization between particle and field dynamics. Furthermore, we have shown elsewhere [24] that
increasing the temporal or spatial resolution in time-stepping simulations tends to make their results (includ-
ing energetic ion spectra) evolve towards those observed in the DES model. Fig. 13 illustrates the formation
and evolution of the high-Mach-number shock structure in the DES run with kPIC = 0.03.

Fig. 14 shows two DES shock profiles computed at two different times. Also shown are the corresponding
spatial distributions of instantaneous time increments for local field and particle updates (note that the particle
time increments are cell-averaged). Based on this figure, we can make several important observations pertain-
ing to the nature of the hybrid DES model. First, early in the simulation a large fraction of the computation
Fig. 12. Phase space diagrams obtained with the DES (kPIC = 0.03) and predictor–corrector codes for the high-Mach-number shock
turbulence case. Particle velocities are normalized by the upstream Alfvén velocity.



Fig. 13. Time-stacked plots of the magnetic field profiles in the high-Mach-number shock turbulence case, observed in the DES run with
kPIC = 0.03.
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domain remains computationally inactive as it takes some time for the backstreaming ions and whistler waves
to reach the unperturbed plasma regions. DES naturally removes unnecessary computation in those regions.
Second, the characteristic field update time increments vary by several orders of magnitude across the shock
structure, being self-consistently adjusted to match the local wave frequencies.

One can also observe that the stability-based time-step size used in the TDS codes overresolves local
frequencies in some regions and underresolves them in the near upstream zone, where the oscillations
are generated. In higher spatial dimensions, the need to choose spatially uniform time-step sizes suitable
for all regions makes multi-scale time-stepping simulations even more difficult. The characteristic particle
update time increments naturally span a much smaller range in magnitude than those required for the field
updates, being mostly dependent on the local magnitude of the magnetic field. Note, however, that a rel-
atively few number of very energetic ions require time increments, which are much smaller than the
depicted cell-averaged quantities. These time increments are automatically adapted to match individual
velocities and accelerations of energetic particles, without affecting the slower update rates for the bulk
ions. Aside from improving CPU efficiency, this enhances the DES model robustness by preventing
particle push time increments from accidentally exceeding the PIC Courant limit (Eq. (10a)). In contrast,
the TDS codes have to choose the global particle time-step size based on the fastest particle velocity in the
simulation. This requirement severely degrades their performance for higher Mach numbers and finer spa-
tial resolutions.

We would also like to emphasize that in addition to achieving superior accuracy in the HFS case, the DES
code offers a significant advantage in CPU speed over its TDS counterparts even for the fairly homogeneous
problems considered in this paper. In general, DES speed-ups can be infinite since actual numbers depend on
both details of a given application (such as the range of temporal scales and presence of inactive regions) and
desired accuracy (see Appendix A.1 for a realistic example of the Earth’s magnetosphere). For all cases shown
in the paper, the DES code remains stable for a broad range of input parameters and runs faster than its (sta-
ble) time-stepping counterparts despite its presently unoptimized form. For the high-Mach-number case, we
find that even using a small time step of 0.005 in the time-stepping codes does not result in producing phys-
ically satisfactory solutions. Nevertheless, comparing CPU usage in the DES and TDS runs in this case
(Fig. 15) is very instructive. It is evident that early in the simulation (when the shock has not yet propagated
far from the piston) larger fractions of the computation domain remain inactive and the effective DES speed-
ups are over a hundred. Less than half way through the run, all domain cells become activated by the backs-
treaming ions, which reduces the DES speed advantage. Nevertheless, at the end of the simulation, the DES
runs still demonstrate speed-ups up to a factor of 5.

9. Conclusion

We have presented a self-adaptive hybrid-PIC model based on a newly developed discrete-event simulation
methodology [7,8]. The traditional hybrid models [4] are based on time-stepping techniques and limited in
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their abilities to effectively describe systems with strong inhomogeneities or varying time scales. On the con-
trary, the DES approach is inherently multi-scale. DES treats all spatially distributed system micro-states (par-
ticles, field components) as asynchronous entities with individual time increments, which are automatically
selected to match local physical frequencies. Time synchronization among coupled micro-states is achieved
through causality relationships, which guarantee timely updates of all variables of interest. In the future,
we deem it possible to increase the accuracy of the current implementation of DES by applying the well-known
Runge–Kutta approach. This will require introducing backward-time biased rules that will apply local
flux-conserving corrections to simulation quantities based on their values found via initial forward-time
integration.

We successfully validated the new hybrid-DES code against two different time-stepping codes on a number
of realistic problems describing weak magnetosonic discontinuities. These tests clearly show that even over
long simulation periods DES reproduces solutions quantitatively close to those obtained in the standard
time-stepping simulations. We also applied this code to simulate the physics of high-Mach-number kinetic
turbulence and showed that the self-adaptive DES model is more robust, more accurate and faster than its
time-stepping counterparts. Note that with the introduction of a nonuniform applied magnetic field and more
complex (multi-dimensional) plasma systems (such as the Earth’s magnetosphere) the advantages of DES are
expected to become much more pronounced due to the distinct ability of event-driven simulation to efficiently
handle ‘‘stiff’’ and ‘‘idle’’ computations in highly inhomogeneous systems (see Appendix A.1).

The event-driven algorithm described in this paper is fully extendable to multiple dimensions and nonuni-
form meshes (currently we are developing a uni-dimensional infrastructure with adaptive logical mapping
capabilities) and conducive to effective parallelization via several techniques [16,25], including a novel conser-
vative (causality preserving) preemptive event processing (PEP) method, which enables synchronous process-
ing of events with close timestamps. The parallel PEP technique and its application to hybrid event-driven
simulations will be described elsewhere.

Finally, we would like to emphasize another distinction of DES from traditional time-stepping methodol-
ogy. In the time-stepping simulations, numerical accuracy is controlled indirectly through a choice of charac-
teristic global time-step sizes, which are often difficult to optimally determine a priori in many complex
problems of interest. In DES, however, one directly deals with accuracy constraints through specifying a num-
ber of physical input parameters (threshold values), while letting the algorithm self-adaptively determine
Fig. A.1. Global time-stepping hybrid simulation of the Earth’s magnetosphere. The intensity log-plots show spatial distributions of
characteristic time-step sizes normalized to the inverse upstream ion gyrofrequency. The left panel represents the whistler-based time-step
size, Dtw (Eq. (10b)). The right panel corresponds to the particle update time increment, DtPIC (Eq. (10a)). No computation is done within
the blue circle, which represents the Earth. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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Appendix A

A.1. Time-step size restrictions in the global magnetospheric hybrid simulations

The interaction of the solar wind with the Earth’s magnetosphere leads to a complex set of boundaries and
discontinuities, each possessing its own temporal and spatial scales. We use results from recent 2-D hybrid
time-stepping simulation of the Earth’s magnetosphere [26] to demonstrate some of the difficulties associated
with simulations of such multi-scale problems within time-stepping methodology. The simulation is set up as
follows. The solar wind plasma (MA = 8, bi = 0.5, Ti = Te) is initialized with a uniform density distribution
and continuously injected from the left boundary in the x-direction toward the Earth. The plasma is allowed
to escape through the other boundaries. The uniform mesh cell size Dx is equal to one ion inertial length (com-
puted with respect to the upstream density) in each direction, Dx = Dy = di. The applied magnetic field is
obtained by superposing a uniform southward interplanetary magnetic field (aligned with the y-axis), and
the magnetic field of the Earth’s line dipole. Fig. A.1 shows the intensity plots of the CFL-restricted time incre-
ments (Eqs. (10a) and (10b)) at an early time in the simulation. The time increments clearly exhibit a highly
inhomogeneous structure, spanning a wide range in magnitude. Such systems are difficult to simulate (espe-
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cially in 3-D), using traditional time-stepping codes. Indeed, the need to globally satisfy Eqs. (10a) and (10b)
leads to an inefficient computation, unless regions with different time increments are updated based on their
own time scales (i.e., asynchronously as in DES). In addition, these time increments can vary significantly dur-
ing the course of the simulation as the magnetosphere forms and evolves towards its asymptotic state. Since
the minimum time-step sizes are not known a priori, the simulation can easily become numerically unstable if
the pre-chosen time steps are not small enough. DES, as outlined in this paper, is an ideal approach to such
problems due to self-adaptive determination of local time increments. We are currently developing a multi-
dimensional DES infrastructure for modeling the magnetosphere and other multi-scale systems.

A.2. Resistivity and timestep variation in the hybrid TDS codes

Fig. A.2 shows low-Mach-number (LFS) fast shock solutions obtained with the explicit predictor–corrector
code for different values of the time-step size Dt and the applied (artificial) resistivity g. The LFS fast shock
phase is shown to be affected by short-wavelength whistler noise, which is sensitive to the amount of applied
resistivity. Therefore, variations in Dt and g lead to long-time shock profiles with somewhat different ampli-
tudes and shock front positions. A thorough convergence study of these time-stepping simulations as a func-
tion of the mesh resolution, the number of particles per cell, the time-step size and the applied resistivity
deserves special attention in the future.

To further corroborate the above point on the differences in the shock phases, Fig. A.3 provides inter-
mediate shock (IS) profiles similarly obtained with the same predictor–corrector code by varying g and Dt.
In this case (as well as in the RD problem), pressure-driven effects dominate over whistler-driven physics. As
a result, the speeds and amplitudes of the discontinuities are found to be rather insensitive to the values of g
and Dt.

Finally, Fig. A.4 demonstrates the effect of artificial resistivity on the HFS turbulence. In the absence of
artificial resistivity, one clearly observes the generation of incoherent noise in the upstream region. These
high-frequency oscillations are driven by noisy PIC fluctuations present in any hybrid code. If not damped
through artificial smoothing, they quickly grow to large amplitudes and fill the whole upstream region. On
the other hand, applying small levels of resistivity results in ‘‘cleaning’’ the upstream solution of unphysical
oscillations. However, since in this study the time-stepping codes use the spatially uniform (constant) resistiv-
ity model, the resistive smoothing procedure also results in damping some profile features. Interestingly, this
can be avoided (as shown by our preliminary studies to be published elsewhere) by applying the same form of
artificial resistivity as used in the DES code (Eqs. (21) and (22)). It should also be noted that the resistive
smoothing (frequency filtering) brings extra benefits to DES compared to time stepping, as it results in
enabling larger time increments for local field computations.
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